

Enhancing Phytosanitary Systems for Healthy Plants, Safe & Sustainable Trade"

Sub-theme:

Emerging innovation in phytosanitary systems

Title:

Horizon scanning for prioritizing invasive alien species with potential to threaten Kenya's agriculture, biodiversity and economy

Presented by: George Momanyi

www.africa-cope.org

Introduction

- Kenya has witnessed a number of invasions by invasive alien species (IAS) in the last decade. The notable ones include
 - □tomato leaf miner (*Tuta absoluta*),
 - □ Fall army worm (*Spodoptera frugiperda*),
 - Demaize chlorotic mottle virus (MLN),
 - □potato cyst nematode (*Globodera rosotchiensis* and *G. pallida*),
 - papaya mealybug (Paracoccus marginatus)
 - Spotted-wing drosophila (Drosophila suzukii)
 - □apple snail (*Pomacea canaliculata*).
- Invasions have resulted in massive losses in agricultural productivity affecting millions of livelihoods.

Introduction.../2

- Horizon scanning prioritises the risks of potential IAS through rapid assessments of likelihood of their entry and establishment and their potential socio-economic and environmental impacts.
- □ Is an approach used to generate information to support IAS planning and management at country level, as well as inform policy and practice
- The approach has been used to determine IAS at the country level such as in Cyprus (Peyton et al. 2019), Great Britain (Roy et al. 2014), Spain (Gassó et al. 2009; Bayón and Vilà 2019) and at the regional level such as the European Union (Roy et al. 2019), Central Europe (Weber and Gut 2004), Western Europe (Gallardo et al. 2016), and the United Kingdom (Sutherland et al. 2008).

Problem Statement

Once biological invasions are recorded anywhere in the globe, the pests spread across continents unabated (examples: *T. absoluta*, and *S. frugiperda*). IAS may arrive into countries through various pathways (both intentional or unintentional human activities):

International trade- remains a major cause of spread of invasive pests

□ Natural spread- aided by the weather

Risk factors: porosity of the borders, Inadequate border biosecurity, Limited capacity to reduce the risk of invasions, Inadequate information about potential AIS, among others.

■NPPOs lack information on the **potential AIS likely to be introduced from the quarantine pest lists.**

□Information supports planning and implementation of sustainable management strategies (i)prevention of invasions-PRAs, ii)early detection, iii)eradication, iv)containment & eventual management of IAS. This information can also be utilised to identify pest pathways, intercept movements at border points, and assess risk of planned imports.

Justification

- □IAS have caused enormous strain on the agricultural sector that supports millions of livelihoods in Kenya. Examples:
 - De Groote et al. (2020) showed that S. frugiperda caused losses of about a third of the annual maize production in Kenya.
 - Rwomushana et al. 2019-- showed that 41% of tomato farmers had lost a large proportion of their crop to *T. absoluta*, -114,000 tonnes of tomatoes (based on farmers' own estimates

An horizon scanning workshop held in July 2021 utilized an horizon scanning tool:

To identify and assess IAS that are likely to invade and subsequently threaten the economy of Kenya through impacting agriculture and biodiversity

- The prioritisation carried out by experts from CABI and KEPHIS under support of CABI's PlantwisePlus Programme. The program will also support additional collaborative activities including PRA and Insight reporting on Horizon.
- An adapted version of the **consensus method developed for ranking IAS** (Sutherland et al. 2011; Roy et al. 2014, 2019) to rank a list of invertebrates and pathogens that are harmful to plants and could possibly enter Kenya in the near future.
- An horizon scanning tool in the CABI CPC utilised, where information from the CPC datasheets is used to generate a list of species that are absent from the selected 'area at risk' (Kenya), but present in specified source areas.
- The risk scoring system used based on that described by Roy et al. (2019): assessment of the likelihood of entry; likelihood of establishment; potential socio-economic impact; and potential environmental impact.

Methodology/...2

■Each of the **four parameters** was scored from 1 (unlikely to enter or establish; or minimal impact) to 5 (very likely to enter or establish; major impact). The definition of each score for each parameter was agreed following testing.

The **likely pathway of arrival and the confidence levels** used to help focus discussions but did not contribute to the overall score.

The **overall score** was used to rank species according to their potential threat for Kenya.

For the highest ranked IAS, a full **PRA** was proposed.

Methodology/...3

The exercise focused mainly on arthropods and pathogenic organisms (bacteria, phytoplasma, virus and viroids) affecting eight key commodities:

Citrus, rose bud wood, tomato, avocado, apples, wheat, dragon fruit and chrysanthemums.

Results for arthropods

•	Overall score (A*B*(C+D))	Comments	•	Overall score (A*B*(C+D))	Comments
Bactrocera zonata		PRA	Achaea janata	40	Not actionable.
Diaspidiotus perniciosus		Not actionable			Full PRA and surveillance
Tetranychus kanzawai		Not actionable	Lymantria dispar		required
Anastrepha ludens	200	PRA and Surveillance	,		Full PRA and surveillance
		PRA and	Mamestra brassicae	200	required
Spodoptera eridania		Surveillance	Otiorhynchus		
		PRA and	sulcatus	45	Not actionable
Spodoptera litura		Surveillance	Rastrococcus		Full PRA and surveillance
Thrips palmi		PRA	invadens	200	required
Cornu aspersum		PRA and Surveillance	Tetranychus pacificus		Not actionable
Rhynchophorus	200	Survemance	Thrips obscuratus	125	Full PRA required
palmarum	72	Not actionable	Xestia c-nigrum	72	Not actionable
		PRA and	Xyleborus dispar	36	Not actionable
Dialeurodes citri	160	Surveillance	Pantomorus cervinus	80	Not actionable
Parabemisia myricae		PRA and Surveillance			

Results for pathogens.../2

Overall

160

48

done

Not actionable

a sehrenne				Overall	
Pathogens of citrus	Overall score (A*B*(C+ D))	Comments	Pathogens of Roses	score (A*B*(C+D))	Comments
			Alternaria alternata	120	Full PRA and Surveillance
Citrus bark cracking	- //		Arabis mosaic virus	72	
viroid/Citrus viroid IV	64	Not actionable	Armillaria tabescens	180	
Citrus bent leaf viroid/ Citrus	0	Not actionable	Calonectria morganii	60	
viroid I	48	Not actionable	Cercospora puderi Coniothyrium wernsdorffiae	20	
Citrus exocortis viroid		Full PRA and Surveillance	Cryptosporella umbrina	20	
Citrus leaf rugose virus	12	Not actionable	Erwinia herbicola pv. gypsophilae	120	PRA to be done
Citrus psorosis B		Full PRA and Surveillance	Eutypa lata	60	Not actionable
Citrus viroid III/Citrus dwarfing			Heterobasidion annosum sensu lato	112	Full PRA and Surveillance
viroid	96	Full PRA	Monilinia fructigena	90) Full PRA
Citrus viroid V	40	Not actionable	Neonectria ditissima	120	
Citrus viroid VI	40		Peronospora sparsa	96	
Hop stunt viroid		Full PRA and Surveillance	Phragmidium tuberculatum	20	
•		Full PRA and Surveillance	Phytoplasma aurantifolia	112	
Pythium vexans			Prunus necrotic ringspot virus Rhizobium rhizogenes	120	Full PRA and Surveillance
Spiroplasma citri			(Agrobacterium rhizogenes	96	5 Full PRA
Xanthomonas campestris		Full PRA and Surveillance	Rhizobium rubi	120	
Xylella fastidiosa	225	Full PRA and Surveillance	Strawberry latent ringspot virus	72	
					PRA and Surveillance to be

Tobacco mosaic virus

Rose yellow vein virus

- Several high scores realized (**overall between 100 200**)
- □ Horizon scanning results for the IAS to:
 - support establishment of a plant health register,
 - update quarantine and regulated pest lists
 - support insight reports on likely risks,
 - prioritization of pests for surveillance and PRAs.
 - In summary, availability of information on the IAS enables, development of sustainable interventions to prevent entry, early detection, containment and eradication of IAS where possible.

Conclusion

Pest initiated PRA List in the Next Workshop

Bactrocera zonata

Banana bunchy top virus

Spodoptera eridania

Anastrepha ludens

Carpophillus hemipterus

Cornu aspersum

Tomato brown rugose virus

Pellargonium zonate spot virus

Planoccoides njalensis

Euwallacea fornicatus

Pepino mosaic virus

Candidatus Liberibacter solanacearum

Carpophillus hemipterus

Potato spindle tuber viroid

Recommendations

Need to incorporate horizon scanning into the institutional work plan for:

development of PRAs,

detection surveillance programs as well as

emergence response plans for Kenya.

Acknowledgements

Theme: "Enhancing Phytosanitary Systems for Healthy Plants, Safe & Sustainable Trade" www.africa-cope.org

For more information, please contact:

www.africa-cope.org www.kephis.org Facebook.com/3rd phytosanitary Conference 2020 Twitter: @3rdphytoconf

Theme: Enhancing Phytosanitary Systems for Healthy Plants, Safe & Sustainable Trade" www.africa-cope.org